[an error occurred while processing this directive]
口腔颌面外科杂志
 首页  |  期刊介绍  |  编 委 会  |  期刊订阅  |  投稿须知  |  联系我们  |  English
口腔颌面外科杂志  2017, Vol. 27 Issue (4): 295-298    DOI: doi: 10.3969/j.issn.1005-4979.2017.04.015
综述 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
上颌窦提升术骨替代材料的研究进展
高萍, 王旭霞
山东大学口腔医学院口腔颌面外科,山东   济南   250012
Advances of Bone Substitute Materials for Maxillary Sinus Augmentation
 GAO  Ping, WANG  Xu-Xia
Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Shandong University,
Jinan 250012, Shandong Province, China
 全文: PDF (2688 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 上颌后牙区解剖结构的特殊性导致了上颌后牙缺失后垂直骨量丧失严重,限制了上颌后牙区口腔种植的适应证,增加了种植手术的风险,成为临床上种植义齿修复的主要障碍。上颌窦提升术可以改善萎缩性上颌骨的牙槽嵴高度,而植骨材料的应用可充分解决上颌后部种植骨量不足的问题。本文介绍了上颌窦提升术中,骨替代材料的研究应用情况。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
高萍
王旭霞
关键词上颌窦提升;     骨替代材料;     种植     
Abstract:  Ridge resorption is the consequence of tooth loss. When the residual bone volume is too diminished and direct replacement of the missing tooth with a dental implant is unsuitable, it may be necessary to augment the deficient ridge prior to dental implant placement. Various reconstructive materials to augment the alveolar bone ridge for osteointegrated dental implants are widely used. Non?鄄vascularized bone, allogenic bone, and artificial bone substitutes are used in sinus lift to segment the sinus floor. This paper describes the recent advances of bone substitute materials in maxillary sinus lift surgery.
Key words maxillary sinus elevation   bone substitute   implants   
通讯作者: 王旭霞,教授.     E-mail: E-mail: wxx@sdu.edu.cn
作者简介: 高萍(1992— ),女,山西省晋中人,硕士研究生. E-mail: 3249131065@qq.com
引用本文:   
高萍,王旭霞. 上颌窦提升术骨替代材料的研究进展[J]. 口腔颌面外科杂志, 2017, 27(4): 295-298.
GAO Ping,WANG Xu-Xia. Advances of Bone Substitute Materials for Maxillary Sinus Augmentation[J]. Journal of Oral and Maxillofacial Surgery, 2017, 27(4): 295-298.
 
[1] Hatano N, Shimizu Y, Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2∶1 autogenous bone/xenograft mixture and simultaneous placement of dental implants[J]. Clin Oral Implants Res, 2004, 15(3):339-345.
[2] Klijn RJ, Meijer GJ, Bronkhorst EM, et al. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans[J]. Tissue Eng Part B Rev, 2010, 16(5):493-507.
[3] Schlegel KA, Fichtner G, Schultze-Mosgau S, et al. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute[J]. Int J Oral Maxillofac Implants, 2003, 18(1):53-58.
[4] Moon JW, Sohn DS, Heo JU, et al. New bone formation in the maxillary sinus using peripheral venous blood alone[J]. J Oral Maxillofac Surg, 2011, 69(9):2357-2367.
[5] Kim YK, Lee J, Yun JY, et al. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study[J]. J Periodontal Implant Sci, 2014, 44(5):216-221.
[6] Kim ES, Kang JY, Kim JJ, et al. Space maintenance in autogenous fresh demineralized tooth blocks with platelet-rich plasma for maxillary sinus bone formation: a prospective study[J]. Springerplus, 2016, 5:274.
[7] Honda H, Tamai N, Naka N, et al. Bone tissue engineering bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaris defect model[J]. J Artif Organs, 2013, 16(3):305-315.
[8] Kim TH, Kim SH, Sándor GK, et al. Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor(CGF) in rabbit-skull defect healing[J]. Arch Oral Biol, 2014, 59(5):550-558.
[9] Sohn DS, Heo JU, Kwak DH, et al. Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone[J]. Implant Dentistry, 2011, 20(5):389-395.
[10] Baslé MF, Grizon F, Pascaretti C, et al. Shape and orientation of osteoblast-like cells (Saos-2) are influenced by collagen fibers in xenogenic bone biomaterial[J]. J Biomed Mater Res, 1998, 40(3):350-357. 3.0.CO;2-E target="_blank">
[11] Baslé MF, Lesourd M, Grizon F, et al. Type I collagen in xenogenic bone material regulates attachment and spreading of osteoblasts over the beta1 integrin subunit[J]. Orthopade, 1998, 27(2):136-142.
[12] Poumarat G, Squire P. Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft[J]. Biomaterials, 1993, 14(5):337-340.
[13] Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy[J]. World J Stem Cells, 2010, 2(4):81-92.
[14] Ripamonti U. Soluble and insoluble signals sculpt osteogenesis in angiogenesis[J]. World Journal of Biological Chemistry, 2010, 1(5):109.
[15] Rosso F, Marino G, Giordano A, et al. Smart materials as scaffolds for tissue engineering[J]. J Cell Physiol, 2005, 203(3):465-470.
[16] Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells[J]. Stem Cell Res Ther, 2010, 1(2):10.
[17] Kuboki Y, Jin Q, Kikuchi M, et al. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis[J]. Connect Tissue Res, 2002, 43(2-3):529-534.
[18] Kuboki Y, Takita H, Kobayashi D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis[J]. J Biomed Mater Res, 1998, 39(2):190-199. 3.0.CO;2-K target="_blank">
[19] Kang EJ, Byun JH, Choi YJ, et al. In vitro and in vivo osteogenesis of porcine skin-derived mesenchymal stem cell-like cells with a demineralized bone and fibrin glue scaffold[J]. Tissue Eng Part A, 2010, 16(3):815-827.
[20] Lundgren S, Andersson S, Gualini F, et al. Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation[J]. Clin Implant Dent Relat Res, 2004, 6(3):165-173.
[21] Chanavaz M. Maxillary sinus: anatomy, physiology, surgery, and bone grafting related to implantology--eleven years of surgical experience(1979-1990)[J]. J Oral Implantol, 1990, 16(3):199-209.
[22] Hürzeler MB, Kirsch A, Ackermann KL, et al. Reconstruction of the severely resorbed maxilla with dental implants in the augmented maxillary sinus: a 5-year clinical investigation[J]. Int J Oral Maxillofac Implants, 1996, 11(4):466-475.
[23] Hatano N, Shimizu Y, Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2∶1 autogenous bone/xenograft mixture and simultaneous placement of dental implants[J]. Clin Oral Implants Res, 2004, 15(3):339-345.
[24] Kaneko T, Nakamura S, Hino S, et al. Continuous intra-sinus bone regeneration after nongrafted sinus lift with a PLLA mesh plate device and dental implant placement in an atrophic posterior maxilla: a case report[J]. International Journal of Implant Dentistry, 2016, 2(1).
[25] Kutkut A, Andreana S. Medical-grade calcium sulfate hemihydrate in clinical implant dentistry: a review[J]. J Long Term Eff Med Implants, 2010, 20(4):295-301.
[26] Guarnieri R, Grassi R, Ripari M, et al. Maxillary sinus augmentation using granular calcium sulfate (surgiplaster sinus): radiographic and histologic study at 2 years[J]. Int J Periodontics Restorative Dent, 2006, 26(1):79-85.
[27] Schmidlin PR, Nicholls F, Kruse A, et al. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes[J]. Clin Oral Implants Res, 2013, 24(2):149-157.
[28] Jurisic M, Manojlovic-Stojanoski M, Andric M, et al. Histological and morphometric aspects of ridge preservation with a moldable, in situ hardening bone graft substitute[J]. Archives of Biological Sciences, 2013, 65(2):429-437.
[29] El-Fiqi A, Kim J H, Perez RA, et al. Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements[J]. J Mater Chem B, 2015, 3(7):1321-1334.
[30] Ohe JY, Kim GT, Lee JW, et al. Volume stability of hydroxyapatite and β-tricalcium phosphate biphasic bone graft material in maxillary sinus floor elevation: a radiographic study using 3D cone beam computed tomography[J]. Clin Oral Implants Res, 2016, 27(3):348-353.
[31] Esposito M, Felice P, Worthington HV. Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus[J]. Cochrane Database Syst Rev, 2014(5): CD008397.
[32] Shanbhag S, Shanbhag V, Stavropoulos A. Volume changes of maxillary sinus augmentations over time: a systematic review[J]. Int J Oral Maxillofac Implants, 2014, 29(4):881-892.
[1] 王丽娜, 范震. 个性化基台在种植修复中的应用进展[J]. 口腔颌面外科杂志, 2017, 27(4): 290-294.
[2] 王丽娜, 王婷婷, 卢跃峰, 范震. 上颌切牙的牙颈部形态测量及分析[J]. 口腔颌面外科杂志, 2017, 27(3): 189-194.
[3] 王佐林, 王方. 从术前设计到风险防范——“争鸣与共识”种植论坛(第三季)学术共识[J]. 口腔颌面外科杂志, 2017, 27(3): 153-156.
[4] 李涛,吴凯南,李琳,张静,朱海国,翁懿. 改良方法制作过渡义齿在牙种植美学修复软组织成形中的临床应用[J]. 口腔颌面外科杂志, 2017, 27(2): 116-120.
[5] 童庆春,张兴文,徐嘉莉,周玉琴. GBR技术在重度牙槽嵴萎缩牙种植中的临床应用[J]. 口腔颌面外科杂志, 2017, 27(2): 121-125.
[6] 朱正娴, 宋 萌, 潘劲松, 李长真. 锥形束CT对牙种植区骨密度测量的应用[J]. 口腔颌面外科杂志, 2017, 27(1): 39-.
[7] 聂红永, 聂红兵, 董 红, 王 芳, 王冰阳, 王志强. 微创拔牙即刻种植动物实验[J]. 口腔颌面外科杂志, 2017, 27(1): 43-.
[8] 宫苹. 牙种植修复中的咬合重建[J]. 口腔颌面外科杂志, 2016, 26(6): 381-.
[9] 尹伟,孙卫革,刘向辉,程义成,沈彬,王晨辰. 半导体激光在种植体周围炎药物治疗中的促进作用[J]. 口腔颌面外科杂志, 2016, 26(6): 422-.
[10] 李阳,高永波. 种植术后双膦酸盐相关性颌骨坏死处理体会[J]. 口腔颌面外科杂志, 2016, 26(6): 427-.
[11] 汤春波, 张晓真. 重度牙周炎患者种植修复方式的选择与思考[J]. 口腔颌面外科杂志, 2016, 26(5): 305-.
[12] 李慕勤,刘惠萍,刘苗,李德超. 褪黑素对纯钛超声微弧氧化膜层体内植入骨结合的影响[J]. 口腔颌面外科杂志, 2016, 26(5): 346-.
[13] 陈颖,钱文涛,罗怡, 张瑛. 后牙即刻种植的临床观察[J]. 口腔颌面外科杂志, 2016, 26(5): 353-.
[14] 程红江. 磁性附着体在下颌种植覆盖义齿的修复效果观察及患者满意度调查[J]. 口腔颌面外科杂志, 2016, 26(4): 277-280.
[15] 何家才,邹多宏. 牙种植体支持式覆盖义齿在临床中的应用[J]. 口腔颌面外科杂志, 2016, 26(4): 229-237.
 

版权所有 © 《口腔颌面外科杂志》编辑部   沪ICP备14036353号-4

地址:上海延长中路399号   邮编:200072
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn